348 research outputs found

    Endorobots for Colonoscopy:Design Challenges and Available Technologies

    Get PDF
    Colorectal cancer (CRC) is the second most common cause of cancer death worldwide, after lung cancer (Sung et al., 2021). Early stage detection is key to increase the survival rate. Colonoscopy remains to be the gold standard procedure due to its dual capability to optically inspect the entire colonic mucosa and to perform interventional procedures at the same time. However, this causes pain and discomfort, whereby it requires sedation or anaesthesia of the patient. It is a difficult procedure to perform that can cause damage to the colonic wall in some cases. Development of new technologies aims to overcome the current limitations on colonoscopy by using advancements in endorobotics research. The design of these advanced medical devices is challenging because of the limited space of the lumen, the contorted shape, and the long tract of the large bowel. The force applied to the colonic wall needs to be controlled to avoid collateral effects such as injuries to the colonic mucosa and pain during the procedure. This article discusses the current challenges in the colonoscopy procedure, the available locomotion technologies for endorobots used in colonoscopy at a prototype level and the commercial products available

    Design of a 2 DOFs Mini Hollow Joint Actuated with SMA Wires

    Get PDF
    Shape memory alloys (SMAs) are smart materials used in robotics because of its light weight and high force-to-weight ratio. The low energy efficiency, up to 5%, has limited their use for large actuators. However, they have shown advantages in the design of mini-robots because of the limited volume required for the actuation system. The present study reports the design and construction of a mini compliant joint (MCJ) with a 2 degrees of freedom (DOFs) intersecting axis. The MCJ prototype has a 20 mm external diameter surrounding a cavity of 8 mm, weighs 2 g, is 20 mm high and can perform an angle rotation of 30 ∘ in less than 260 ms. It uses SMA NiTi wires in antagonistic configuration and springs to reduce the energy consumption and minimise heat production. The design methods and experimental results of the manufactured prototype are reported and discussed

    New Robotic Technologies in Cancer Colon Screening

    Get PDF
    Colorectal cancer (CRC) is the 3rd most common cause of cancer death worldwide. Regular screening of the asymptomatic population can drastically reduce the mortality rate. CRC screening includes several proceedings although the gold standard remains optical colonoscopy (OC), which is unpleasant, causes pain and discomfort. New technologies exemplified by capsule endoscopy (CE) constitute alternative painless solutions and despite their limitations, e.g., passive locomotion and absence of on-board instrumentation, are being increasingly used for CRC screening. Research and development centres are investigating novel advanced robotic technologies for diagnostic and therapeutic use. These include wireless communication, active locomotion, sensors, diagnostic, and therapeutic instruments. This review describes the traditional OC procedure and the existing robotic technologies for CRC

    A Wireless Compact Control Unit (WiCCU) for Untethered Pneumatic Soft Robots

    Get PDF

    Is subclinical cardiovascular disease linked with periodontal disease in diabetic and non-diabetic subjects?

    Get PDF
    : Periodontal disease leads to a systemic hyper-inflammatory state that might impair other co-morbidities including cardiovascular disease. Evidence-based findings showed that periodontitis may be linked with subclinical signs of cardiovascular diseases such as arterial stiffness. Nevertheless, some contrasting results have been reported over the years. A cross-sectional study regarding the relationship between periodontal disease and subclinical cardiovascular diseases, in non-diabetic and diabetic individuals, has been recently published. Therefore, the aim of this commentary is to give an in-depth on this topic

    A review on model-based and model-free approaches to control soft actuators and their potentials in colonoscopy

    Get PDF
    Colorectal cancer (CRC) is the third most common cancer worldwide and responsible for approximately 1 million deaths annually. Early screening is essential to increase the chances of survival, and it can also reduce the cost of treatments for healthcare centres. Colonoscopy is the gold standard for CRC screening and treatment, but it has several drawbacks, including difficulty in manoeuvring the device, patient discomfort, and high cost. Soft endorobots, small and compliant devices thatcan reduce the force exerted on the colonic wall, offer a potential solution to these issues. However, controlling these soft robots is challenging due to their deformable materials and the limitations of mathematical models. In this Review, we discuss model-free and model-based approaches for controlling soft robots that can potentially be applied to endorobots for colonoscopy. We highlight the importance of selecting appropriate control methods based on various parameters, such as sensor and actuator solutions. This review aims to contribute to the development of smart control strategies for soft endorobots that can enhance the effectiveness and safety of robotics in colonoscopy. These strategies can be defined based on the available information about the robot and surrounding environment, control demands, mechanical design impact and characterization data based on calibration.<br/

    Neurophysiological models of gaze control in Humanoid Robotics

    Get PDF
    This work present a robotic implementation of a neurophysiological model of rapid orienting gaze shifts in humans, with the final goal of model parameters validation and tuning. The quantitative assessment of robot performance confirmed a good ability to foveate the target with low residual errors around the desired target position. Furthermore, the ability to maintain the desired position was good and the gaze fixation after the saccadic movement was executed with only few oscillations of the head and eye. This is because the model required a very high dynamic. 9.1. Robotic point of view The head and eye residual oscillations increase linearly with increasing amplitude. In Fig. 16 is evident that the residual gaze oscillation is less than head. This is explained with the compensation introduced by the eye oscillations which compensate the gaze which becomes more stable. We explain these findings by observing that the accelerations required to execute (or stopand-invert) the movement are very high especially for the eye movement. Even if the robotic head was designed to match the human performances (in terms of angle and velocities) in its present configuration it is still not capable produce such accelerations. This is particularly evident for the movement of the eye because the motor has to invert its rotation when the fixation point is first achieved. With respect to the timing of the movement it has been found that the results of the experiments are in close accordance to the data available on humans (Goossens and Van Opstal, 1997). The same conclusion may be drawn for the shapes of the coordinated movement that can be directly compared to the typical examples reported in Fig. 14. Figure 16, 17 show that the model is capable of providing inadequate control of the redundant platform. The system response is very fast, due to the robotic head platform design. TGst time take into account the problem of eye-head coordination and the very high acceleration. The head is voluntarily delayed less than 30 millisecond after eye movement, according to human physiology, by means of Ph block (Goossens and Van Opstal ,1997). 9.2. Neurophysiological point of view A typical robotic eye-head movement is shows in Fig. 14
    • …
    corecore